Exercises on Oracles, Relativization, and the Polynomial Hierarchy CSCI 6114 Fall 2021

Joshua A. Grochow

September 9, 2021

An oracle Turing machine is a TM equipped with an additional tape, the oracle tape, and three additional states: Q, Y, N (for "query", "yes", "no"). If it enters the Q state, then it queries the oracle about the string x on the oracle tape. The oracle answers the query in the next time step with either YES or NO: if the oracle says YES, the TM enters state Y, and if the oracle says NO then enters state N. When an oracle machine is instantiated with a particular language L for the oracle, the oracle's answers are correctly answering whether x (the string on the oracle tape) is in L. In this case we speak of machine M with oracle L, sometimes denoted M^L .

Given a class of oracle TMs \mathcal{M} and a class \mathcal{C} of languages, we define $\mathcal{M}^{\mathcal{C}}$ to be the class of languages L such that there exists $O \in \mathcal{C}$ (for "oracle") and a machine $M \in \mathcal{M}$ such that M^O decides L correctly: $L = L(M^O)$. Many standard complexity classes such as P, NP, PSPACE, EXP have such canonical corresponding classes of oracle TMs that we often write, e.g., $\mathsf{P}^{\mathcal{C}}$ for the class of languages decided by polynomial-time oracle Turing machines with some oracle from \mathcal{C} (rather than giving a different notation for the class of polynomial-time oracle TMs). Such classes are colloquially called relativizable, because it is "clear" what it means to relativize them to an oracle.

- 1. Show that $P^P = P$ and $NP^P = NP$.
- 2. Show that $P^{\mathsf{NP}} \neq \mathsf{NP}$ unless $\mathsf{NP} = \mathsf{coNP}$ (and thus PH collapses).
- 3. Show that $P^{NP} = P^{coNP}$, and more generally $P^{\mathcal{C}} = P^{co\mathcal{C}}$.
- 4. Show that $NP \cup coNP \subseteq P^{NP} \subseteq \Sigma_2 P \cap \Pi_2 P$.

- 5. (a) Show that $\Sigma_2 P = NP^{NP}$.
 - (b) More generally, show that $\Sigma_k P = NP^{\Sigma_{k-1}P} = \Sigma_{k-1}P^{NP}$ and $\Pi_k P = coNP^{\Pi_{k-1}P}$.
- 6. We say that a statement *relativizes* if it remains true in the presence of any oracle.
 - (a) Show that $P \subseteq NP \subseteq PSPACE$ relativizes, that is, for any oracle $O, P^O \subseteq NP^O \subseteq PSPACE^O$.
 - (b) What happens when we relativize the statement $P \subseteq NP \subseteq PSPACE$ to a PSPACE-complete oracle?
- 7. Use the oracle characterization of PH to give an alternative, simpler proof that if $\Sigma_k P = \Sigma_{k+1} P$, then $PH = \Sigma_k P$.
- 8. Use the oracle characterization of PH to give a simple proof that Exercise 4 relativizes to give: $\Sigma_k P \cup \Pi_k P \subseteq P^{\Sigma_k P} \subseteq \Sigma_{k+1} P \cap \Pi_{k+1} P$.
- 9. Show that $NP^{NP \cap coNP} = NP$. This is an example of lowness:

Definition 1. Given a relativizable complexity class C, a language L is low for C if $C^L = C$. Low(C) is the class of all such languages: Low $(C) = \{L | C^L = C\}$.

- 10. The previous exercise showed that $NP \cap coNP \subseteq Low(NP)$. Show that this is an equality.
- 11. The (relativized) Karp–Lipton Theorem says that for any oracle X, if $\mathsf{NP}^X\subseteq\mathsf{P}^X/poly$ then $\mathsf{PH}^X=\Sigma_2\mathsf{P}^X$. Use the fact that this theorem relativizes, together with what we know about the relationship between sparse sets and $\mathsf{P/poly}$ to show that PH collapses if and only if there exists a sparse set S such that PH^S collapses.

Resources

• There is also an oracle X relative to which $\mathsf{P}^X \neq \mathsf{NP}^X$ (Baker, Gill, & Solovay, $SIAM\ J.\ Comput.,\ 1975$). It's worth thinking about how you would construct such a thing! Hint: diagonalize against poly-time Turing machines.

Combined with exercise 6(b), this shows that any proof resolving the P versus NP question must be non-relativizing.

The proof is covered in detail in Sipser $\S 9.2$, Du & Ko $\S 4.3-4.8$, Arora & Barak $\S 3.5$.

- I believe it is an open question whether there exists an oracle X relative to which PH "looks like" the arithmetic hierarchy, in the sense that: (a) PH^X is infinite, but (b) $\mathsf{P}^{\Sigma_k\mathsf{P}^X} = \Sigma_{k+1}\mathsf{P}^X \cap \Pi_{k+1}\mathsf{P}^X$ for all k.
- PH defined in terms of oracles: Homer & Selman §7.4, Du & Ko Ch. 3, Arora & Barak §5.5.
- General introduction to oracles: Homer & Selman §3.9 (in the context of computability, no poly-time bounds), Du & Ko §3.1 for nondeterministic poly-time oracle TMs, Arora & Barak §3.5
- Du & Ko §4.3–4.8 talk about other relativizations of NP and §9.6 talks about relativized PH.
- High-level discussions of relativization and its role in complexity: Moore & Mertens §9.4, Wigderson §5.1